

Titerbestimmung von AgNO₃

Beschreibung

Dieser Applikationsbericht beschreibt das allgemeine Verfahren zur Titerbestimmung von Silbernitratlösungen. Diese Methode ist für Silbernitrat in Wasser und in Eisessig anwendbar. Der Titer ist eine dimensionslose Zahl von etwa 1 zum Korrigieren der angegebenen Konzentration. In der Software der Titriergeräte und den Applikationsberichten von SI Analytics® beschreibt der Begriff "Titer" die exakte Konzentration in mol/l und nicht den dimensionslosen Faktor.

Geräte

Titrator	TL 5000 oder höher	
Wechselaufsatz WA 20 (nur für TL 7000 oder höher)		
Elektrode	AgCl 62 oder AgCl 62 RG	
Kabel	L 1 A (nur für Elektroden mit Steckkopf)	
Rührer	Magnetrührer TM 235 oder ähnliche	
Laborgeräte	Becherglas 150 ml	
	Magnetrührstab 30 mm	

Reagenzien

1	Silbernitratlösung, von der der Titer bestimmt werden soll		
2	NaCl Referenzmaterial		
3	Salpetersäure 4 mol/l		
4	Polyvinylalkohol – Lösung 0.5%		
5	Elektrolytlösung L2114 (KNO ₃ 2 mol/l + KCl 0.001 mol/l)		
6	Destilliertes Wasser		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

Das NaCl Referenzmaterial wird getrocknet, wie in dem entsprechenden Analysezertifikat beschrieben.

Polyvinylalkohol – Lösung 0.5% 0.5 g Polyvinylalkohol werden in 100 ml destilliertem Wasser gelöst.

Reinigung der Elektrode

Die Elektrode wird mit destilliertem Wasser gereinigt. Für die Lagerung der AgCl 62 eignet sich die Elektrolytlösung L2114 Für die AgCl 62 RG kann destilliertes Wasser verwendet werden.

Probenvorbereitung

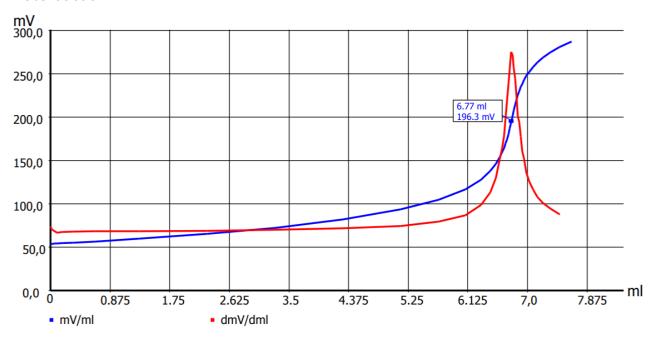
Die Menge des volumetrischen Standards hängt von der Größe der Bürette und der Konzentration der AgNO₃-Lösung ab. Die Menge sollte so gewählt werden, dass etwa die Hälfte des Bürettenvolumens verbraucht wird. Am gebräuchlichsten ist die 20 ml Bürette. Die erforderliche NaCl-Menge kann nach dieser Faustregel abgeschätzt werden:

$$W[g] = 0.6 * Konzentration[mol/l]$$

Bei kleineren Konzentrationen ist die benötigte Menge Referenzmaterial sehr gering und schwierig zu wiegen. Hier bedient man sich folgender Methode: eine größere Menge NaCl (W_{NaCl}) wird in einen Kolben eingewogen. Dazu wird die 100 – 200 fache Menge destilliertes Wasser (W_{H2O}) gewogen und das NaCl darin gelöst. Von dieser Lösung wird zur Titration eine aliquote Menge A eingewogen. Die darin enthaltene NaCl-Menge wird nach folgender Formel berechnet:

$$W[g] = \frac{W_{NaCl}[g]}{(W_{NaCl}[g] + W_{H2O}[g])} * A[g]$$

Zur Bestimmung des Titers einer 0,1 mol/l AgNO₃-Lösung werden 0,06g NaCl Referenzmaterial in ein 150 ml Becherglas auf 0,1mg genau eingewogen und mit destilliertem, Chlorid-freiem Wasser auf 80 ml aufgefüllt. 0.5 ml 4 mol/l HNO und 0.5-1 ml der Polyvinylalkohollösung werden zugegeben. Die Titration wird mit der AgNO₃-Lösung bis zu einem Äquivalenzpunkt durchgeführt. Der Verbrauch sollte etwa 5 - 15 ml betragen.


Wenn sich der spezifizierte Gehalt des volumetrischen Standards signifikant von 100% unterscheidet, muss die Einwaage zur Berechnung der Konzentration korrigiert werden:

$$W = \frac{Proben masse * spezifiziertem Gehalt \%}{100}$$

xylem | Titration 168 TD 2

Titrationsparameter

Probentitration

Standardmethode	Titre AgNO3		
Methodentyp	Automatische Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit / Drift	Benutzerdefiniert	Min. Wartezeit	3 s
		Max. Wartezeit	15 s
		Messzeit	3 s
		Drift	10 mV/min
Startwartezeit	0 s		
Dynamik	steil	Max. Schrittweite	1.0 ml
		Steigung bei max. ml	15
		Min. Schrittweite	0.02 ml
		Steigung bei min. ml	230
Dämpfung	keine	Titrationsrichtung	steigend
Vortitration	aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	400
Max. Titrationsvolumen	50 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

Bei der Titration mit sehr niedrig konzentrierter AgNO₃-Lösung oder bei der Titration in Eisessig sollte die Mindestwartezeit auf 6s und die Drift auf 5 mV/min eingestellt werden. In diesem Fall sollte auch die Dynamik auf mittel oder flach eingestellt werden.

xylem | Titration 168 TD 3

Berechnung:

$$T [mol/l] = \frac{W * F2}{(EQ - B) * M * F1}$$

В	0	Blindwert
W	man	Probenmenge [g]
F2	1000	Umrechnungsfaktor 2
EQ1		Verbrauch des Titrationsmittels am ersten EQ
М	58.44	Molekulargewicht von NaCl
F1	1	Umrechnungsfaktor 1

Das Ergebnis der Titerbestimmung sollte in mol/l direkt im Wechselaufsatz gespeichert werden.

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

